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Assignment 1: Querying a Social Graph
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LDBC Data generator
• Synthetic dataset available in different 

scale factors
– SF100 ç for quick testing 
– SF3000 ç the real deal

• Very complex graph

– Power laws (e.g. degree)
– Huge Connected Component
– Small diameter
– Data correlations

Chinese have more Chinese names

– Structure correlations
Chinese have more Chinese friends
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CSV file schema
• See: https://event.cwi.nl/lsde/data (sf100 only)
• Counts for sf3000 (total size: 37GB CSV, 7GB bz2 compressed )

Person (9M)
PersonId PK
FirstName
LastName
Gender
Birthday
CreationDate
LocationIP
BrowserUsed
LocatedIn

Knows(1.3B)
PersonFrom
PersonTo

interests(.2B)
PersonID
tagID

Tags (16K)
TagID
Name
URL

Place(1.4K
PlaceID PK
URL
type

https://event.cwi.nl/lsde/data
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The Query
• The marketeers of a social network have been data mining the musical 

preferences of their users. They have built statistical models which predict 
given an interest in say artists A2 and A3, that the person would also like 
A1 (i.e. rules of the form: A2 and A3 è A1). Now, they are commercially 
exploiting this knowledge by selling targeted ads to the management of 
artists who, in turn, want to sell concert tickets to the public but in the 
process also want to expand their artists' fanbase.

• The ad is a suggestion for people who already are interested in A1 to buy 
concert tickets of artist A1 (3 for the price of 2!) for your birthday 
celebration birthday to invite two of your friends ("who we know will love it" 
- the social network says), who are also friends themselves, who live in the 
same city, who are not yet interested in A1 yet, because they are 
interested in other artists A2, A3 and A4 that the data mining model 
predicts to be correlated with A1.
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The Query
For all persons P1:
• who have their birthday on or in between D1..D2 

• who like A1 already

• who have friends P2 and P3, who live in the same city as P1

– where P2 and P3 are themselves also friends

– who do not like A1 yet, but have a score >=2, where we 
give a score of 

• 1 for liking any of the artists A2, A3 and A4 

• 0 if not 

the final score, the sum, hence is a number between 0 
and 3.

The answer of the query is a table (score, P1, P2, P3) 
where score is the sum of the scores for P2 and P3; 
ordered on all columns 
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Binary files
• Created by “loader” program in example github repo
• Total size: 6GB

Person.bin
PersonId PK
Birthday
LocatedIn
Knows_first
Knows_n
Interests_first
Interests_n

Knows.bin
PersonPos

interests.bin
tagID
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What it looks like
• Created by “loader” program in example github repo
• Total size: 6GB

person.bin

knows.bin
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n

knows_first

knows_n

2bytes 
* 204M

48bytes 
* 8.9M

4bytes 
* 1.3B
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The Naïve Implementation
The “cruncher” program

Go through the persons P1 sequentially

• check whether P1’s birthdate is in range D1..D2

• check in interests whether this person likes A1, if so

• visit all friends P2 of P1, for each:

• Check in the person data that P2 lives in the same places as P1

• Compute in interests the score for P2 (likes A2,A3,A4?)

• If the P2.score >= 2, visit all friends P3 of P2, for each:

– Check in the person data that P3 lives in the same places as P1

– Compute in interests the score for P3 (likes A2,A3,A4?)

– If the P3.score >= 2, see if P1 is among the friends of P3, if so

• We have a result (P2.score+P3.score,P1,P2,P3)
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Naïve Query Implementation
• “cruncher” 

person.bin

knows.bin
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knows_first

knows_n

2bytes 
* 204M

48bytes 
* 8.9M

4bytes 
* 1.3B

results

P1 P2

P2

P2.score

P3

P3

P3.score

P4
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Memory Hierarchy
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Hardware Progress

Transistors CPU performance
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RAM,Disk Improvement Over the Years

RAM Magnetic Disk
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Latency Lags Bandwidth
• Communications of the ACM, 2004
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Sequential Access Hides Latency
• Sequential RAM access

– CPU prefetching: multiple consecutive cache lines being requested 
concurrently

• Sequential Magnetic Disk Access
– Disk head moved once
– Data is streamed as the disk spins under the head

• Sequential Network Access

– Full network packets
– Multiple packets in transit concurrently
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Consequences For Algorithms
• Analyze the main data structures

– How big are they?
• Are they bigger than RAM?
• Are they bigger than CPU cache (a few MB)?

– How are they laid out in memory or on disk?

• One area, multiple areas?

Java Object Data Structure 
vs
memory pages (or cache lines) 



event.cwi.nl/lsde

Consequences For Algorithms
• Analyze your access patterns

– Sequential: you’re OK
– Random: it better fit in cache! 

• What is the access granularity?
• Is there temporal locality?

• Is there spatial locality?

lo
ca

tio
n

time time
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Improving Data Access Patterns
• Make the data smaller

– Remove unused data from the structure
– Apply data compression (of some kind)

• If random access is needed, gzip does not work
• zero surpression è use the smallest datatype possible

• Do Not Access All Data
– Apply filters as soon as possible

– Cluster or Partition the data 

• Only access data in particular clusters/partitions
– Build an index 

• Avoid full access to the main table by identifying useful regions using an index

• Trade Random Access For Sequential Access
– Make more passes over the data. Separate access to different regions into different phases.

• Try Denormalizing the Schema
– Remove joins/lookups, add looked up stuff to the table 

• Does not help if the join explodes the size (this is the case with friends!)
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3-pass Cruncher
• Pass 2: build qualifying friends list

person.bin

knows.bin

knows_first

knows_n
P1 P2

P2
P3

score

Q
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ng
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results
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3-pass Cruncher
• pass 3: for all P1, check all combinations of qualifying friends

person.bin

knows.bin

knows_first

knows_n
P1 P3?

P2
P3

score

Q
ua
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ng
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nd

results
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ng
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Q
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ng
_f
irs
t
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Challenges for your Reorg program
Questions for re-org:
• Can we throw way unneeded data?
• Can we store the data more efficiently?
• Can we build indexes?

Questions for cruncher:
• Can we move some of the work to the re-org phase?
• Can we exploit indexes?

We will meet on the leaderboard!
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Improving Data Access Patterns
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event.cwi.nl/lsde

Improving Data Access Patterns
• Make the data smaller

– Remove unused data from the structure
– Apply data compression (of some kind)

• If random access is needed, gzip does not work
• zero surpression è use the smallest datatype possible

• Do Not Access All Data
– Apply filters as soon as possible

– Cluster or Partition the data 

• Only access data in particular clusters/partitions
– Build an index 

• Avoid full access to the main table by identifying useful regions using an index

• Trade Random Access For Sequential Access
– Make more passes over the data. Separate access to different regions into different phases.

• Try Denormalizing the Schema
– Remove joins/lookups, add looked up stuff to the table 

• Does not help if the join explodes the size (this is the case with friends!)



event.cwi.nl/lsde

The Query and Its Filter Conditions
The “cruncher” program

Go through the persons P sequentially, and for those in birthday range
• count how many of the artists A2,A3,A4 are liked as the score 

for those with score>0 and who do not like A1:

– visit all persons F known to P. 

For each F:

• checks on equal location 
• check whether F already likes A1
• check whether F also knows P 
if all this succeeds (score,P,F) is added to a result table.
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The Query and its Filter Conditions
The “cruncher” program

Go through the persons P1 sequentially

• check whether P1’s birthdate is in range D1..D2
• check in interests whether this person likes A1, if so

• visit all friends P2 of P1, for each:

• Check in the person data that P2 lives in the same location as P1

• Compute in interests the score for P2 (likes A2,A3,A4?)

• If the P2.score >= 2, visit all friends P3 of P2, for each:

– Check in the person data that P3 lives in the same location as P1

– Compute in interests the score for P3 (likes A2,A3,A4?)

– If the P3.score >= 2, see if P1 is among the friends of P3, if so

• We have a result (P2.score+P3.score,P1,P2,P3)
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Reducing The Problem
• knows.bin  

– is big (larger than RAM)
– is accessed randomly

• random access unavoidable (denormalization too costly)
Ideas:
• Only keep mutual-knows

– Idea: remove non-mutual knows in reorg
• Advantage: queries do not need to check (only reorg), queries get faster
• Problem: 99% of knows in this dataset is mutual (no reduction)
• Problem: finding non-mutual knows is costly (requires full sort on person-id)
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Reducing The Problem
• knows.bin  

– is big (larger than RAM)
– is accessed randomly

• random access unavoidable (denormalization too costly)
Ideas:
• Only keep mutual-knows
• Only keep local-knows

– Idea: remove knows where persons live in different cities (30x less: 150 è 5 friends)
• Reorg:  one pass with random access in a ‘location’ array (2b * 8.9M)

– Idea: remove persons with zero friends left-over (halves it)
• 8.9M è 5M persons, 8.9*23M è 5*23M interests

– Idea: remove non-mutual local friends after removing the above (smaller knows!)
• Can be done with random access 

– Reorg: write a localknows.tmp file, mmap it, use it i.s.o. knows.bin to filter
– localknows.tmp = 5*10M=50M knows = 200MB random access
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Reducing The Problem
• knows.bin  

– is big (larger than RAM), and is accessed randomly
• random access unavoidable (denormalization too costly)

Ideas:
• Only keep local-knows

– Idea: only keep knows when both live in the same location (30x less: 150è5 friends)
• reorg:  one pass with random access in a ‘location’ array (2b * 8.9M)

– Idea: remove persons with 0 friends left-over (more than halves it)
• 8.9M è 5M persons, 
• 8.9*23M è 5*23M interests (only keep interests of surviving persons)

– More aggressive idea (harder to implement): 
• check whether each remaining friend of p has another friend of p as friend

– ..otherwise, a triangle is impossible 
• challenge: if you remove a persons, they will still refer to you (inconsistency)

– need to remove the removed person from the friends list
– this could lead to more persons to prune (recursive!!) 
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Reduced Random Access Solution
knows2.bin
person2.bin
interests2.bin

person.bin

knows.bin
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knows_first

knows_n

2bytes 
* 204M

48bytes 
* 8.9M

4bytes 
* 1.3B

4bytes 
* 50M

person2.bin

16bytes 
* 5M
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2bytes 
* 115M

kn
ow
s2
.b
in



event.cwi.nl/lsde

Improving Data Access Patterns
• Make the data smaller

– Remove unused data from the structure
– Apply data compression (of some kind)

• If random access is needed, gzip does not work
• zero surpression è use the smallest datatype possible

• Do Not Access All Data
– Apply filters as soon as possible

– Cluster or Partition the data 

• Only access data in particular clusters/partitions
– Build an index 

• Avoid full access to the main table by identifying useful regions using an index

• Trade Random Access For Sequential Access
– Make more passes over the data. Separate access to different regions into different phases.

• Try Denormalizing the Schema
– Remove joins/lookups, add looked up stuff to the table 

• Does not help if the join explodes the size (this is the case with friends!)
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The Query and Its Filter Conditions
The “cruncher” program

Go through the persons P sequentially, and for those in birthday range
• count how many of the artists A2,A3,A4 are liked as the score 

for those with score>0 and who do not like A1:

– visit all persons F known to P. 

For each F:

• checks on equal location 
• check whether F already likes A1
• check whether F also knows P 
if all this succeeds (score,P,F) is added to a result table.
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Idea: using Inverted Files
The search engine data structure
• For each term (keyword), a list of document IDs

Here: for each Tag (e.g. A1,A2,A3,A4) a list of
persons

in
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s2
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2bytes 
* 115M

A2

A3

A4
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Inverted File on Tags (=Artists)

4bytes 
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person2.bin

16bytes 
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Inverted File on Tags (=Artists)

16bytes 
* 5M

4bytes 
* 115M

A2

A3

A2

A4

A1

bitmap

Merge
lists

4bytes 
* 15M

0.5MBtags postings

Algorithm:
- Read A1 invlist. Populate a 

boolean array (bitmap) all false, 
but put all persons in A1 to true

- Read invlists A2,A3,A4 and
union-sum them in a merge to
get person candidates + scores

- Visit the candidates, check 
bitmap to see they don’t like A1. 
If so, visit their friends and
confirm that they do like A1
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The Query and Its Filter Conditions
The “cruncher” program

Go through the persons P sequentially, and for those in birthday range
• count how many of the artists A2,A3,A4 are liked as the score 

for those with score>0 and who do not like A1:

– visit all persons F known to P. 

For each F:

• checks on equal location 
• check whether F already likes A1
• check whether F also knows P 
if all this succeeds (score,P,F) is added to a result table.
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The Query and its Filter Conditions
The “cruncher” program

Go through the persons P1 sequentially

• check whether P1’s birthdate is in range D1..D2
• check in interests whether this person likes A1, if so

• visit all friends P2 of P1, for each:

• Check in the person data that P2 lives in the same location as P1

• Compute in interests the score for P2 (likes A2,A3,A4?)

• If the P2.score >= 2, visit all friends P3 of P2, for each:

– Check in the person data that P3 lives in the same places as P1

– Compute in interests the score for P3 (likes A2,A3,A4?)

– If the P3.score >= 2, see if P1 is among the friends of P3, if so

• We have a result (P2.score+P3.score,P1,P2,P3)
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The Query and its Filter Conditions
The “cruncher” program

Go through the persons P1 sequentially

• check whether P1’s birthdate is in range D1..D2
• check in interests whether this person likes A1, if so

• visit all friends P2 of P1, for each:

• Check in the person data that P2 lives in the same location as P1

• Compute in interests the score for P2 (likes A2,A3,A4?)
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• We have a result (P2.score+P3.score,P1,P2,P3)
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Idea: use Table Partitioning
Goals: 
• make birthdate comparisons faster
• remove birthdate column (no longer needed, implicit)
• Increase locality in person.bin and knows.bin!

partition person.bin by birthdate
• 366 partitions (one for each day)
Problem: 
• friends would point across all 366 tables



event.cwi.nl/lsde

4bytes 
* 15M

Partitioning è Sorting 

person.bin

16bytes 
* 5M

po
st

in
gs
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4bytes 
* 115M

tags postings mutual_local_knows
Range-partitioning is similar to sorting
Idea: 

sort person.bin on birthdate 
- every person gets a new number (=offset)
- change all numbers in knows2.bin!

have a small index on date
- offset of the first person with that birthdate

person.bin

03 jan

30 dec
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Inverted Files Revisited
The birthdate clustering gives us for a birthdate range a person range
• Say people with bday in February are at positions between [4,50]
• Idea: binary search in the postings lists for artists (A2,A3,A4)

A1

A2

A3
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Inverted Files Revisited
The birthdate clustering gives us for a birthdate range a person range
• Say people with bday in February are at positions between [4,50]
• Idea: binary search in the postings lists for artists A1

A1

A2

A3



event.cwi.nl/lsde

Inverted File on Tags (=Artists)
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Algorithm:
Same as before, but..
- Instead of fetching the *whole* 

invlists for A2, A3, A4, do a 
binary search in them to limit 
them to a person ramge. The 
number of candidates will be
more than 4x smaller. 

(the person range is given by the
birthdate offset array – see two
slides back)

bitmap
0.5MB
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Improving Data Access Patterns
• Make the data smaller

– Remove unused data from the structure
– Apply data compression (of some kind)

• If random access is needed, gzip does not work
• zero surpression è use the smallest datatype possible

• Do Not Access All Data
– Apply filters as soon as possible

– Cluster or Partition the data 

• Only access data in particular clusters/partitions
– Build an index 

• Avoid full access to the main table by identifying useful regions using an index

• Trade Random Access For Sequential Access
– Make more passes over the data. Separate access to different regions into different phases.

• Try Denormalizing the Schema
– Remove joins/lookups, add looked up stuff to the table 

• Does not help if the join explodes the size (this is the case with friends!)


