E Centrum Wiskunde & Informatica

Large-Scale Data Engineering

Some notes on Access Patterns, Latency,
~ A\ Bandwidth

+ Tips for
practical

event.cwi.nl/lsde

event.cwi.nl/lsde

W &« C' | [Idbcouncil.org/industry/members
Centrum Wiskunde & Informatica @ The graph & RDF
L D B C benchmark reference
LDBC Data generator

BENCHMARKS » INDUSTRY » PUBLIC» DEVELOPER» EVENTS TALKS PUBLICATIONS BL(

« Synthetic dataset available in different —\ g

scale factors /- rhatonstodihai i o8c i g%m o mf,,m
— SF100 <€ for quick testing 13 NGRS 5 a2 A
— SF3000 € the real deal e .
* Very complex graph Companies:

— Power laws (e.g. degree) 8, copen iR .
— Huge Connected Component B orwae % 20N totext

Making Technology Work For You

— Small diameter
@

— Data correlations ":.'ﬁe_otechnology *Sparsity

Chinese have more Chinese names

— Structure correlations @igdata T==2
Chinese have more Chinese friends
ORACLE o
Same $'& SPARQLCcity

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

CSV file schema

« See: hitps://event.cwi.nl/Isde/data (sf100 only)

« Counts for sf3000 (total size: 37GB CSV, 7GB bz2 compressed)

Knows (1.3B)

Person (9M) Z////PersonFrom
PersonId PK PersonTo Tags (16K)
FirstName ,

\\\\1nterests(.2B) TaglD
LastName Name

PersonlID

Gender f2a1D URL
Birthday 29
CreationDate Place (1.4K
LocationIP PlaceID PK
BrowserUsed ////////////////////?URL
LocatedIn type

event.cwi.nl/lsde

https://event.cwi.nl/lsde/data

The Query

« The marketeers of a social network have been data mining the musical
preferences of their users. They have built statistical models which predict
given an interest in say artists A2 and A3, that the person would also like
A1 (i.e. rules of the form: A2 and A3 =» A1). Now, they are commercially
exploiting this knowledge by selling targeted ads to the management of
artists who, in turn, want to sell concert tickets to the public but in the
process also want to expand their artists' fanbase.

« The ad is a suggestion for people who already are interested in A1 to buy
concert tickets of artist A1 (3 for the price of 2!) for your birthday
celebration birthday to invite two of your friends ("who we know will love it"
- the social network says), who are also friends themselves, who live in the

same city, who are not yet interested in A1 yet, because they are
interested in other artists A2, A3 and A4 that the data mining model
predicts to be correlated with A1.

event.cwi.nl/lsde

The Query

For all persons P1:

* who have their birthday on or in between D1..D2

* who like A1 already

* who have friends P2 and P3, who live in the same city as P1
— where P2 and P3 are themselves also friends

— who do not like A1 yet, but have a score >=2, where we
give a score of

» 1 for liking any of the artists A2, A3 and A4
e 0 if not

the final score, the sum, hence is a number between 0
and 3.

The answer of the query is a table (score, P1, P2, P3)
where score is the sum of the scores for P2 and P3;
ordered on all columns

Persons P1's birthday is in [D1, D2]

v N 7
N

v W s
NN
1 >\/ \l(L
L A ™

score(P2) >= 2, score (P3) >=2

Result:
(Q, score(P2)+score(P3), P1, P2, P3)

event.cwi.nl/lsde

E C Wiskunde & Informatica

Binary files

« Created by “loader” program in example github repo

* Total size: 6GB

Person.bin

PersonId PK
Birthday

LocatedIn /////
Knows first

Knows n
Interests first ~
Interests n

Knows .bin

PersonPos ————

interests.bin

taglD

event.cwi.nl/lsde

E Centrum Wiskunde & Infor

t 1t looks like

Wha

« Created by “loader” program in example github repo

* Total size: 6GB

@\\\\\\\\

person
persao

WX W)
| == Jl Y~ Iy

2bytes
* 204M

48bytes
* 8.9M

4bytes
*1.3B

ows |

s_first

/

knows_n

bin

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

The Naive Implementation

The “cruncher” program

Go through the persons P1 sequentially
« check whether P1’s birthdate is in range D1..D2
» check in interests whether this person likes A1, if so
* visit all friends P2 of P1, for each:
e Check in the person data that P2 lives in the same places as P1
o Compute in interests the score for P2 (likes A2,A3,A4?)
» [fthe P2.score >= 2, visit all friends P3 of P2, for each:
— Check in the person data that P3 lives in the same places as P1
— Compute in interests the score for P3 (likes A2,A3,A4?)
— If the P3.score >= 2, see if P1 is among the friends of P3, if so
* We have a result (P2.score+P3.score,P1,P2,P3)

event.cwi.nl/lsde

E nnnnnnnnnnnnnnnnnnnnnnnnnnn

Naive Query Implementation 4bytes
“ ,, *] 3B

* “cruncher
kfows | bin

knows_first

2
]\le_) W S_H A7
C \
Mtpd N

* 8 OM P4

P3

2bytes
* 204M

event.cwi.nl/lsde

Memory Hierarchy

Processor SUPER FAST
SUPER EXPENSIVE

TINY CAPACITY

CPU CACHE

FASTER
VEL 1 (L1) CACH EXPENSIVE
e SMALL CAPACITY

EDO, SD-RAM, DDR-SDRAM, RD-RAM PHYSICAL MEMORY FAST
PRICED REASONABLY
and More... AVERAGE CAPACITY

SOLID STATE MEMORY AVERAGE SPEED
SSD, Flash Drive A PRICED REASONABLY
AVERAGE CAPACITY

SLOW

Mechanical Hard Drives CHEAP
LARGE CAPACTITY

A Simplified Computer Memory Hierarchy
lllustration: Ryan J. Leng

event.cwi.nl/lsde

Transistor count

Centrum Wiskunde & Informatica

Hardware Progress

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

16-Core SPARC T3
Six-Core Core i7,

2,600,000,000 Six-Core Xeon 7“°°\\' @10-Core Xeon Westmere-EX
Dual-Core ltanium 2@ gcore POWERY
_ AMD K10 —Quad-
1,000,000,000 o 3= Quad Core tantum Tuwla
Itanium 2 with 9MB cache ® "\ 'Six-Core Opteron 2400
AMD K Core i7 (Quad)
Core 2 Duo
Itanium 2@ Cell
100,000,000
Pentium 4 oBarton ® Atom
® VB ke
curve shows transistor AMD K6
10,000,000 count doubling every entupeium it
two years ANDKS
Pentium
1,000,000
100,000
10,000
8008®
2,300 - 4004@ /RCA 1802
f T T T 1
1971 1980 1990 2000 2011

Date of introduction

Transistors

Single-Threaded Integer Performance
Based

on adjusted SPECint

per year

= |ntel Xeon

® Intel Core
Intel Pentium

4 Intel Itanium

= Intel Celeron
AMD FX

= AMD Opteron
AMD Phenom

* AMD Athlon
|BM POWER

* PowerPC
Fujitsu SPARC
Sun SPARC
DEC Alpha

= MIPS

* HP PA-RISC

per year

CPU performance

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

RAM ,Disk Improvement Over the Years

Performance improvement since 1980

100000

10000

T

1000

T

100

T

Ao capacity
---&--- bandwidth

Ll 1 1

—&— random access (1/latency) ~N

year

RAM

Performance improvement since 1983

100000

10000

T

1000

T

100

..... A m:pacny]
---9--- bandwidth
—&— random access (1/latency)

1983

1990 1994 1998 2003 2008
year

Magnetic Disk

event.cwi.nl/lsde

Latency Lags Bandwidth

« Communications of the ACM, 2004 10000
Microprocessor
By David A. Patterson .
1000 - , % SR
Network
Memo
100
Relative
Bandwidth
Improvement
| A | E | \‘ ‘ l | AGS 1045 Mrersr fecmsess

| 10 100
Relative Latency Improvement

Recognizing the chronic imbalance between
bandwidth and latency, and how to cope with it.

A s | review performance trends, I am struck by a consistent event.cwi.nl/lsde

theme across many technologies: bandwidth improves much

E Centrum Wiskunde & Informatica

Sequential Access Hides Latency

« Sequential RAM access

— CPU prefetching: multiple consecutive cache lines being requested
concurrently

« Sequential Magnetic Disk Access

— Disk head moved once

— Data is streamed as the disk spins under the head
« Sequential Network Access

— Full network packets

— Multiple packets in transit concurrently

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Consequences For Algorithms

* Analyze the main data structures
— How big are they?
» Are they bigger than RAM?
* Are they bigger than CPU cache (a few MB)?
— How are they laid out in memory or on disk?

e One area, multiple areas?

P XA) / T YA
o XE))
yB/ /B ®\ " | Java Object Data Structure
@ swft-@ /| memory pages (or cache lines)
o ___ej o

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Consequences For Algorithms

* Analyze your access patterns
— Sequential: you're OK
— Random: it better fit in cache!
* What is the access granularity?
e |s there temporal locality?

* |s there spatial locality?

location

time time event.cwi.nl/Isde

E Centrum Wiskunde & Informatica

Improving Data Access Patterns

Make the data smaller
— Remove unused data from the structure
— Apply data compression (of some kind)
e If random access is needed, gzip does not work
e zero surpression = use the smallest datatype possible

Do Not Access All Data
— Apply filters as soon as possible

— Cluster or Partition the data
e Only access data in particular clusters/partitions
— Build an index

* Avoid full access to the main table by identifying useful regions using an index

Trade Random Access For Sequential Access

— Make more passes over the data. Separate access to different regions into different phases.

Try Denormalizing the Schema
— Remove joins/lookups, add looked up stuff to the table

* Does not help if the join explodes the size (this is the case with friends!)

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Improving Data Access Patterns

Make the data smaller
— Remove unused data from the structure
— Apply data compression (of some kind)
e If random access is needed, gzip does not work
e zero surpression = use the smallest datatype possible

Do Not Access All Data
— Apply filters as soon as possible

— Cluster or Partition the data
e Only access data in particular clusters/partitions
— Build an index

* Avoid full access to the main table by identifying useful regions using an index

Trade Random Access For Sequential Access

— Make more passes over the data. Separate access to different regions into different phases.

Try Denormalizing the Schema
— Remove joins/lookups, add looked up stuff to the table

* Does not help if the join explodes the size (this is the case with friends!)

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

3-pass Cruncher

« Pass 2: build qualifying friends list

=R khows |bin
5 o &
|

b eb o

= 5 £

o p— el

> &

jpee BEL R

= &3 .

5 8, 8, knows first

— | PIMZ
]\J.lUWS I’IL

a - \ -

results event.cwi.nl/Isde

E Centrum Wiskunde & Informatica

3-pass Cruncher

* pass 3: for all P1, check all combinations of qualifying friends

kno%s.bin

knows_first

| QualifyingFriend
Qualifying_n

— Qualifying_first

[y

SCOore

3?

knows_n

<
I

results event.cwi.nl/Isde

E Centrum Wiskunde & Informatica

Challenges for your Reorg program

Questions for re-org:

« Can we throw way unneeded data?

« Can we store the data more efficiently?
« Can we build indexes?

Questions for cruncher:
« Can we move some of the work to the re-org phase?
« Can we exploit indexes?

We will meet on the leaderboard!

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Improving Data Access Patterns

Make the data smaller
— Remove unused data from the structure
— Apply data compression (of some kind)
e If random access is needed, gzip does not work
e zero surpression = use the smallest datatype possible

Do Not Access All Data
— Apply filters as soon as possible

— Cluster or Partition the data
e Only access data in particular clusters/partitions
— Build an index

* Avoid full access to the main table by identifying useful regions using an index

Trade Random Access For Sequential Access

— Make more passes over the data. Separate access to different regions into different phases.

Try Denormalizing the Schema
— Remove joins/lookups, add looked up stuff to the table

* Does not help if the join explodes the size (this is the case with friends!)

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Improving Data Access Patterns

Make the data smaller
— Remove unused data from the structure
— Apply data compression (of some kind)
e If random access is needed, gzip does not work
e zero surpression = use the smallest datatype possible

Do Not Access All Data
— Apply filters as soon as possible

— Cluster or Partition the data
e Only access data in particular clusters/partitions
— Build an index

* Avoid full access to the main table by identifying useful regions using an index

Trade Random Access For Sequential Access

— Make more passes over the data. Separate access to different regions into different phases.

Try Denormalizing the Schema
— Remove joins/lookups, add looked up stuff to the table

* Does not help if the join explodes the size (this is the case with friends!)

event.cwi.nl/lsde

E Centrum Wiskunde & Informatic

The Query and Its Filter Conditions

The “cruncher” program

Go through the persons P sequentially, and for those in birthday range
« count how many of the artists A2,A3,A4 are liked as the score
for those with score>0 and who do not like A1:
— visit all persons F known to P.
For each F:
e checks on equal location
e check whether F already likes A1
e check whether F also knows P
if all this succeeds (score,P,F) is added to a result table.

event.cwi.nl/lsde

E Centrum Wiskunde & Informatic

The Query and 1ts Filter Conditions

The “cruncher” program

Go through the persons P1 sequentially
« check whether P1’s birthdate is in range D1..D2
» check in interests whether this person likes A1, if so
* visit all friends P2 of P1, for each:
e Check in the person data that P2 lives in the same location as P1
o Compute in interests the score for P2 (likes A2,A3,A47?)
» [fthe P2.score >= 2, visit all friends P3 of P2, for each:
— Check in the person data that P3 lives in the same location as P1
— Compute in interests the score for P3 (likes A2,A3,A4?)
— If the P3.score >= 2, see if P1 is among the friends of P3, if so
* We have a result (P2.score+P3.score,P1,P2,P3)

event.cwi.nl/lsde

Reducing The Problem

* knows.bin
— is big (larger than RAM)
— is accessed randomly

¢ random access unavoidable (denormalization too costly)
|deas:

* Only keep mutual-knows
— ldea: remove non-mutual knows in reorg
» Advantage: queries do not need to check (only reorg), queries get faster
e Problem: 99% of knows in this dataset is mutual (no reduction)

* Problem: finding non-mutual knows is costly (requires full sort on person-id)

event.cwi.nl/lsde

Reducing The Problem

* knows.bin
— is big (larger than RAM)
— is accessed randomly

¢ random access unavoidable (denormalization too costly)
|deas:

* Only keep mutual-knows
* Only keep local-knows
— ldea: remove knows where persons live in different cities (30x less: 150 = 5 friends)
* Reorg: one pass with random access in a ‘location’ array (2b * 8.9M)
— ldea: remove persons with zero friends left-over (halves it)
e 8.9M = 5M persons, 8.9*23M = 5*23M interests
— Idea: remove non-mutual local friends after removing the above (smaller knows!)
» Can be done with random access
— Reorg: write a localknows.tmp file, mmap it, use it i.s.0. knows.bin to filter
— localknows.tmp = 5*10M=50M knows = 200MB random access

event.cwi.nl/lsde

Reducing The Problem

e knows.bin

— is big (larger than RAM), and is accessed randomly

* random access unavoidable (denormalization too costly)
|deas:

* Only keep local-knows

— ldea: only keep knows when both live in the same location (30x less: 150=>5 friends)
e reorg: one pass with random access in a ‘location’ array (2b * 8.9M)
— ldea: remove persons with 0 friends left-over (more than halves it)
e 8.9M = 5M persons,
e 8.9"23M = 5*23M interests (only keep interests of surviving persons)
— More aggressive idea (harder to implement):
» check whether each remaining friend of p has another friend of p as friend
— ..otherwise, a triangle is impossible
 challenge: if you remove a persons, they will still refer to you (inconsistency)
— need to remove the removed person from the friends list

— this could lead to more persons to prune (recursive!!) event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Reduced Random Access Solution 4pyzes
% | 3B

ows |

knowsZ2.bin
person2.bin

interests2.bin

knows_first

/

rv—-‘—v—- o—dhud wln-d-d

48bytes

*8.9M '

16bytes
*SM

knows_n

knows2.bin

4bytes

event.cwi.nl/lsde

*50M

E Centrum Wiskunde & Informatica

Improving Data Access Patterns

Make the data smaller
— Remove unused data from the structure
— Apply data compression (of some kind)
e If random access is needed, gzip does not work
e zero surpression = use the smallest datatype possible

Do Not Access All Data
— Apply filters as soon as possible

— Cluster or Partition the data
e Only access data in particular clusters/partitions
— Build an index

* Avoid full access to the main table by identifying useful regions using an index

Trade Random Access For Sequential Access

— Make more passes over the data. Separate access to different regions into different phases.

Try Denormalizing the Schema
— Remove joins/lookups, add looked up stuff to the table

* Does not help if the join explodes the size (this is the case with friends!)

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Improving Data Access Patterns

Make the data smaller
— Remove unused data from the structure
— Apply data compression (of some kind)
e If random access is needed, gzip does not work
e zero surpression = use the smallest datatype possible

Do Not Access All Data
— Apply filters as soon as possible

— Cluster or Partition the data
e Only access data in particular clusters/partitions
— Build an index

* Avoid full access to the main table by identifying useful regions using an index

Trade Random Access For Sequential Access

— Make more passes over the data. Separate access to different regions into different phases.

Try Denormalizing the Schema
— Remove joins/lookups, add looked up stuff to the table

* Does not help if the join explodes the size (this is the case with friends!)

event.cwi.nl/lsde

E Centrum Wiskunde & Informatic

The Query and Its Filter Conditions

The “cruncher” program

Go through the persons P sequentially, and for those in birthday range
« count how many of the artists A2,A3,A4 are liked as the score
for those with score>0 and who do not like A1:
— visit all persons F known to P.
For each F:
e checks on equal location
e check whether F already likes A1
e check whether F also knows P
if all this succeeds (score,P,F) is added to a result table.

event.cwi.nl/lsde

E Centrum Wiskunde & Informatic

The Query and Its Filter Conditions

The “cruncher” program

Go through the persons P sequentially, and for those in birthday range
« count how many of the artists A2,A3,A4 are liked as the score
for those with score>0 and who do not like A1:
— visit all persons F known to P.
For each F:
e checks on equal location
» check whether F already likes A1
e check whether F also knows P
if all this succeeds (score,P,F) is added to a result table.

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Idea: using Inverted Files

The search engine data structure
« For each term (keyword), a list of document IDs

Here: for each Tag (e.g. A1,A2,A3,A4) a list of

persons
A27 Brutus | — [1] 2] 4] 11 [31[45[173 [174 |
A3[Caesar | — [1] 2] 4] 5] 6]16] 57 [132[... |
A4 [Calpurnia | — [2 [31 [54] 101 |

interests2.bin

Zbytes —— ; — ;
ictionary ostings
*1I5M

» Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

event.cwi.nl/lsde

\CWL

Inverted File on Tags (=Artists)

4bytes
* J[ISM

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Inverted File on Tags (=Artists)

0.5MB

Algorithm:

- Read Al invlist. Populate a
boolean array (bitmap) all false,
but put all persons in Al to true

- Read invlists A2,A3,A4 and
union-sum them in a merge to
get person candidates + scores

- Visit the candidates, check

4b}’t65 bitmap to see they don’t like Al.

* TSM If 0, visit their friend.s and

confirm that they do like Al

4bytes
* J[ISM

event.cwi.nl/lsde

E Centrum Wiskunde & Informatic

The Query and Its Filter Conditions

The “cruncher” program

Go through the persons P sequentially, and for those in birthday range
« count how many of the artists A2,A3,A4 are liked as the score
for those with score>0 and who do not like A1:
— visit all persons F known to P.
For each F:
e checks on equal location
e check whether F already likes A1
e check whether F also knows P
if all this succeeds (score,P,F) is added to a result table.

event.cwi.nl/lsde

E Centrum Wiskunde & Informatic

The Query and Its Filter Conditions

The “cruncher” program

Go through the persons P sequentially, and for those
« count how many of the artists A2,A3,A4 are liked as the score
for those with score>0 and who do not like A1:
— visit all persons F known to P.
For each F:
e checks on equal location
e check whether F already likes A1
e check whether F also knows P
if all this succeeds (score,P,F) is added to a result table.

event.cwi.nl/lsde

E Centrum Wiskunde & Informatic

The Query and 1ts Filter Conditions

The “cruncher” program

Go through the persons P1 sequentially
« check whether P1’s birthdate is in range D1..D2
» check in interests whether this person likes A1, if so
* visit all friends P2 of P1, for each:
e Check in the person data that P2 lives in the same location as P1
o Compute in interests the score for P2 (likes A2,A3,A47?)
» [fthe P2.score >= 2, visit all friends P3 of P2, for each:
— Check in the person data that P3 lives in the same places as P1
— Compute in interests the score for P3 (likes A2,A3,A4?)
— If the P3.score >= 2, see if P1 is among the friends of P3, if so
* We have a result (P2.score+P3.score,P1,P2,P3)

event.cwi.nl/lsde

E Centrum Wiskunde & Informatic

The Query and 1ts Filter Conditions

The “cruncher” program

Go through the persons P1 sequentially
» check whether P1’s birthdate is in range
» check in interests whether this person likes A1, if so
* visit all friends P2 of P1, for each:
e Check in the person data that P2 lives in the same location as P1
o Compute in interests the score for P2 (likes A2,A3,A47?)
e [fthe P2.score >= 2, visit all friends P3 of P2, for each:
— Check in the person data that P3 lives in the same location as P1
— Compute in interests the score for P3 (likes A2,A3,A4?)
— If the P3.score >= 2, see if P1 is among the friends of P3, if so
* We have a result (P2.score+P3.score,P1,P2,P3)

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Idea: use Table Partitioning

Goals:
* make birthdate comparisons faster
* remove birthdate column (no longer needed, implicit)

* Increase locality in person.bin and knows.bin!

< > SalesJanuary

' 1]01/01/03
File1
FG1 2101/01/03
n|01/31/03
\-_/ .
< > SalesFebruary
File2 1]02/01/03 YearlySales (view)
< 2(02/01/03
e 1101/01/03
n |02/28/03 —»2|01/01/03
__’/ |
n (12/31/03
.
. Partitioned View
SalesJanuary
<> SalesDecember UNION ALL
SalesFebruary
i 112/01/03
File12
FG12 2 (12/01/03
n|12/31/03

event.cwi.nl/lsde

| CVL_ -
Partitioning =» Sorting
Range-partitioning 1s similar to sorting
Idea:
sort person.bin on birthdate
- every person gets a new number (=offset)
- change all numbers in knows2.bin!

have a small index on date
- offset of the first person with that birthdate

\— 03 jan

person.bin

30 dec

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Inverted Files Revisited

The birthdate clustering gives us for a birthdate range a person range

« Say people with bday in are at positions between

. binary search in the postings lists for artists (A2,A3,A4)

Al Brutus | — [T[-20_4 1 11131145 G73-[174]
A2[Caesar | — [+[-2] 4] 5] 616 [¢57-[132]-~~~]
A3 [Calpurnia | — [Z7] 31| 5% [10T

S E s g
Dictionary Postings

» Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Inverted Files Revisited

The birthdate clustering gives us for a birthdate range a person range
« Say people with bday in are at positions between
. binary search in the postings lists for artists A1

Al[Bruws | — [FFDLAL 1113114 Fars[ws]

S E s g
Dictionary Postings

» Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Inverted File on Tags (=Artists)

tags postings

february

0.5MB

person2.bin

]

bitmap

knows2.bin Z

4bytes
* ISM

4bytes
* J[ISM

Algorithm:

Same as before, but..

- Instead of fetching the *whole*
invlists for A2,A3,A4,do a
binary search in them to limit
them to a person ramge. The
number of candidates will be
more than 4x smaller.

(the person range is given by the
birthdate offset array — see two
slides back)

event.cwi.nl/lsde

E Centrum Wiskunde & Informatica

Improving Data Access Patterns

Make the data smaller
— Remove unused data from the structure
— Apply data compression (of some kind)
e If random access is needed, gzip does not work
e zero surpression = use the smallest datatype possible

Do Not Access All Data
— Apply filters as soon as possible

— Cluster or Partition the data
e Only access data in particular clusters/partitions
— Build an index

* Avoid full access to the main table by identifying useful regions using an index

Trade Random Access For Sequential Access

— Make more passes over the data. Separate access to different regions into different phases.

Try Denormalizing the Schema
— Remove joins/lookups, add looked up stuff to the table

* Does not help if the join explodes the size (this is the case with friends!)

event.cwi.nl/lsde

